Lecture 9 2018/2019 Microwave Devices and Circuits for Radiocommunications

2018/2019

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course + laboratory)
- Lectures- associate professor Radu Damian
 - Friday 09-11, II.13
 - E 50% final grade
 - problems + (2p atten. lect.) + (<u>3 tests</u>) + (bonus activity)
 - 3p=+0.5p
 - <u>all materials/equipments authorized</u>
- Laboratory associate professor Radu Damian
 - Wednesday 12-14, II.12 odd weeks
 - L 25% final grade
 - P 25% final grade

Materials

http://rf-opto.etti.tuiasi.ro

🔹 Laborator	vrul de Microunde si Op: × +	
\leftrightarrow \rightarrow C	Not secure rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0	☆ B
	Main <u>Courses</u> Master Staff Research Students Admin	
	Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educational software	
	Microwave Devices and Circuits for Radiocommunications (English)	
	Course: MDCR (2017-2018)	
	Course Coordinator: Assoc.P. Dr. Radu-Florin Damian Code: EDOS412T Discipline Type: DOS; Alternative, Specialty Credits: 4 Enrollment Year: 4, Sem. 7	
	Activities	
	Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:	
	Evaluation	
	Type: Examen	
	A: 50%, (Test/Colloquium) B: 25%, (Seminary/Laboratory/Project Activity) D: 25%, (Homework/Specialty papers)	
	Grades	
	Aggregate Results	
	Attendance	
	<u>Course</u> Laboratory	
	Lists	
	Bonus-uri acumulate (final) Studenti care nu pot intra in examen	
	Materials	
	Course Slides	

<u>MDCR Lecture 1</u> (pdf, 5.43 MB, en, **as**) <u>MDCR Lecture 2</u> (pdf, 3.67 MB, en, **as**) <u>MDCR Lecture 3</u> (pdf, 4.76 MB, en, **as**) MDCR Lecture 4 (pdf, 5.58 MB, en, **as**)

Examen: Logarithmic scales

dB = 10 •	$\log_{10} (P_2 / P_1)$	dBm = 10 • log	dBm = 10 • log ₁₀ (P / 1 mW)			
o dB	= 1	o dBm	= 1 mW			
+ 0.1 dB + 3 dB + 5 dB + 10 dB	= 1.023 (+2.3%) = 2 = 3 = 10	3 dBm 5 dBm 10 dBm 20 dBm	= 2 mW = 3 mW = 10 mW = 100 mW			
-3 dB -10 dB -20 dB -30 dB	= 0.5 = 0.1 = 0.01 = 0.001	-3 dBm -10 dBm -30 dBm -60 dBm	= 0.5 mW = 100 μW = 1 μW = 1 nW			
[dBm] + [dB] = [dBm]						
[dBm/Hz] + [dB] = [dBm/Hz]						

[x] + [dB] = [x]

Complex numbers arithmetic!!!!
z = a + j · b ; j² = -1

Impedance Matching

Matching , from the point of view of power transmission

Lecture 3-4 Microwave Network Analysis

Scattering matrix – S

 V₂⁺ = 0 meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$\Gamma_2 = 0 \longrightarrow V_2^+ = 0$$

Scattering matrix – S

- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Impedance Matching

The Smith Chart

The Smith Chart

The Smith Chart

Impedance Matching with Stubs Impedance Matching

Single stub tuning

Shunt Stub

Single stub tuning

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Smith chart, r=1 and g=1

Microwave Amplifiers

Amplifier as two-port

- Charaterized with S parameters
- normalized at Zo (implicit 50Ω)
- Datasheets: S parameters for specific bias conditions

Datasheets

NE46100

VCE = 5 V, IC = 50 mA _

FREQUENCY		11	S	S 21		S 12		S 22		MAG ²	
(MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		(dB)	
100	0.778	-137	26.776	114	0.028	30	0.555	-102	0.16	29.8	
200	0.815	-159	14.407	100	0.035	29	0.434	-135	0.36	26.2	
500	0.826	-177	5.855	84	0.040	38	0.400	-162	0.75	21.7	
800	0.827	176	3.682	76	0.052	43	0.402	-169	0.91	18.5	
1000	0.826	173	2.963	71	0.058	47	0.405	-172	1.02	16.3	
1200	0.825	170	2.441	66	0.064	47	0.412	-174	1.08	14.0	
1400	0.820	167	2.111	61	0.069	47	0.413	-176	1.17	12.4	
1600	0.828	165	1.863	57	0.078	54	0.426	-177	1.15	11.4	
1800	0.827	162	1.671	53	0.087	50	0.432	-178	1.14	10.6	
2000	0.828	159	1.484	49	0.093	50	0.431	-180	1.17	9.5	
2500	0.822	153	1.218	39	0.11	48	0.462	177	1.18	7.8	
3000	0.818	148	1.010	30	0.135	46	0.490	174	1.16	6.3	
3500	0.824	142	0.876	21	0.147	44	0.507	170	1.16	5.3	
4000	0.812	137	0.762	13	0.168	38	0.535	167	1.14	4.3	
VCE = 5 V, IC = 100 mA											
100	0.778	-144	27.669	111	0.027	35	0.523	-114	0.27	30.2	
200	0.820	-164	14.559	97	0.029	29	0.445	-144	0.42	27.0	
500	0.832	-179	5.885	84	0.035	38	0.435	-166	0.81	22.2	
800	0.833	175	3.691	76	0.048	45	0.435	-173	0.95	18.8	
1000	0.831	172	2.980	71	0.056	51	0.437	-176	1.05	16.0	
1200	0.836	169	2.464	67	0.061	52	0.432	-178	1.11	14.0	
1400	0.829	166	2.121	61	0.072	53	0.447	-180	1.12	12.6	
1600	0.831	164	1.867	58	0.080	54	0.445	179	1.14	11.4	

S₂P - Touchstone

Touchstone file format (*.s2p)

```
! SIEMENS Small Signal Semiconductors
VDS = 3.5 V ID = 15 mA
#GHz S MA R 50
                       S12 S22
l f
      S11
              S21
IGH7 MAG ANG MAG ANG MAG ANG MAG ANG
1.000 0.9800 -18.0 2.230 157.0 0.0240 74.0 0.6900 -15.0
2.000 0.9500 -39.0 2.220 136.0 0.0450 57.0 0.6600 -30.0
3.000 0.8900 -64.0 2.210 110.0 0.0680 40.0 0.6100 -45.0
4.000 0.8200 -89.0 2.230 86.0 0.0850 23.0 0.5600 -62.0
5.000 0.7400 -115.0 2.190 61.0 0.0990 7.0 0.4900 -80.0
6.000 0.6500 -142.0 2.110 36.0 0.1070 -10.0 0.4100 -98.0
     Fmin Gammaopt rn/50
! f
       dB MAG ANG -
! GHz
2.000 1.00 0.72 27 0.84
4.000 1.40 0.64 61 0.58
```

Stability Microwave Amplifiers

Amplifier as two-port

For an amplifier two-port we are interested in:

- stability
- power gain
- noise (sometimes small signals)
- linearity (sometimes large signals)

Stability

$$|\Gamma_{in}| < 1$$
 $|S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L}| < 1$

The limit between stability/instability

$$|\Gamma_{in}| = 1$$
 $\log_{10}|\Gamma_{in}| = 0$ $\left|S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L}\right| = 1$

 $|S_{11} \cdot (1 - S_{22} \cdot \Gamma_L) + S_{12} \cdot S_{21} \cdot \Gamma_L| = |1 - S_{22} \cdot \Gamma_L|$

• determinant of the S matrix $\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$

$$|S_{11} - \Delta \cdot \Gamma_L| = |1 - S_{22} \cdot \Gamma_L|$$
$$|S_{11} - \Delta \cdot \Gamma_L|^2 = |1 - S_{22} \cdot \Gamma_L|^2$$

Stability

Output stability circle (CSOUT)

$$\left|\Gamma_{L} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right| = \left|\frac{S_{12} \cdot S_{21}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right|$$

$$\left|\Gamma_{L}-C_{L}\right|=R_{L}$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_L for the limit between stability and instability (|Γ_{in}| = 1)
- This circle is the output stability circle (Γ_L)

$$C_{L} = \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{L} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right|}$$

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$, $|\Gamma|=1$

• $|\Gamma| = 1 \rightarrow \log_{10} |\Gamma| = 0$, the intersection with the plane z = 0 is a circle

Rollet's condition

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2 \cdot |S_{12} \cdot S_{21}|}$$

$$\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$$

- The two-port is unconditionally stable if:
- two conditions are simultaneously satisfied:
 - K > 1
 - |∆| < 1</p>
- together with the implicit conditions:
 - |S11| < 1</p>
 - |S22| < 1</p>

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2 \cdot |S_{12} \cdot S_{21}|} > 1$$

$$\left|\Delta\right| = \left|S_{11} \cdot S_{22} - S_{12} \cdot S_{21}\right| < 1$$

μ Criterion

 Rollet's condition cannot be used to compare the relative stability of two or more devices because it involves constraints on two separate parameters, K and Δ

$$\mu = \frac{1 - \left|S_{11}\right|^2}{\left|S_{22} - \Delta \cdot S_{11}^*\right| + \left|S_{12} \cdot S_{21}\right|} > 1$$

- The two-port is unconditionally stable if:
 - µ>1
- together with the implicit conditions:
 - S11 < 1</p>
 - |S22| < 1
- In addition, it can be said that larger values of μ imply greater stability
 - μ is the distance from the center of the Smith Chart to the closest output stability circle

μ' Criterion

 Dual parameter to µ, determined in relation to the input stability circles

$$\mu' = \frac{1 - \left|S_{22}\right|^2}{\left|S_{11} - \Delta \cdot S_{22}^*\right| + \left|S_{12} \cdot S_{21}\right|} > 1$$

- The two-port is unconditionally stable if:
 - μ'>1
- together with the implicit conditions:
 - S11 < 1</p>
 - |S22| < 1
- In addition, it can be said that larger values of μ' imply greater stability
 - μ' is the distance from the center of the Smith Chart to the closest input stability circle

Rollet's condition

ATF-34143 at Vds=3V Id=20mA.
 @0.5÷18GHz

μ Criterion

μ' Criterion

Output series/shunt resistor

- The procedure can be applied similarly at the output (finding g/r circles tangent to CSOUT)
- From previous examples, resistive loading at the input has a positive effect over output stability and vice versa (resistive loading at the output, effect over input stability)

Stabilization of two-port

+ Term Term1 Num=1 Z=50 Ohm R R1 R=89.18 0	R R2 Dhm R=6.82 Ohm	SnP SnP1 File="D:\users\s2	p\f341433a.s2p" _	Term Term2 Num=2 Z=50 Ohm
			· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·				
		1 1 1 N N N		
S-PARAMETERS				e o o e e
S. Dorom	MaxGain	Mu a	StabFact	a a a conce
SP1	MaxGain	Mu · · ·	StabFact	
Start=0.5 GHz	MAG a second	Mu1 a a	in Kanada a a	2 2 2 2 <i>2</i> 2
Stop=10.0 GHz Step=0.1 GHz	MAG=max_ga	n(S) Mu=mu(S)	K=stab_fact(S)	

Stabilization of two-port

Power Gain of Microwave Amplifiers

Microwave Amplifiers

Amplifier as two-port

- For an amplifier two-port we are interested in:
 - stability

power gain

- noise (sometimes small signals)
- linearity (sometimes large signals)

Design for Maximum Gain

Simultaneous matching

 Simultaneous matching can be achieved if and only if the amplifier is unconditionally stable at the operating frequency, and |Γ|<1 solutions are those with "–" sign of quadratic solutions

$$\begin{split} \Gamma_{S} &= \frac{B_{1} - \sqrt{B_{1}^{2} - 4 \cdot \left|C_{1}\right|^{2}}}{2 \cdot C_{1}} & \Gamma_{L} &= \frac{B_{2} - \sqrt{B_{2}^{2} - 4 \cdot \left|C_{2}\right|^{2}}}{2 \cdot C_{2}} \\ \begin{cases} B_{1} &= 1 + \left|S_{11}\right|^{2} - \left|S_{22}\right|^{2} - \left|\Delta\right|^{2} & \begin{cases} B_{2} &= 1 + \left|S_{22}\right|^{2} - \left|S_{11}\right|^{2} - \left|\Delta\right|^{2} \\ C_{1} &= S_{11} - \Delta \cdot S_{22}^{*} & \begin{cases} C_{2} &= S_{22} - \Delta \cdot S_{11}^{*} \end{cases} \end{split}$$

Maximum Available Gain

Indicator across full frequency range of the capability to obtain a power gain

Design for Specified Gain Microwave Amplifiers

Amplifier as two-port

- For an amplifier two-port we are interested in:
 - stability

power gain

- noise (sometimes small signals)
- linearity (sometimes large signals)

Design for Specified Gain

- In many cases we need an approach other than "brute force" when we prefer to design for less than the maximum obtainable gain, in order to:
 - improve noise behavior (L3 + C9)
 - improve stability
 - improve VSWR
 - control performance at multiple frequencies
 - improve amplifier's bandwidth

Constant VSWR circles

 Certain applications may require a certain ratio between maximum / minimum line voltage

Constant Q circles

Quality factor - bandwidth

 High quality factor is equivalent with narrow bandwidth

Wide bandwidth amplifier

 Design for maximum gain at two different frequencies creates an frequency unbalanced amplifier

Wide bandwidth amplifier

- Design for maximum gain at highest frequency
- Controlled mismatch at lower frequency
 - eventually at more frequencies inside the bandwidth

Design for Specified Gain

Assumes the amplifier device unilateral

$$G_{TU} = |S_{21}|^2 \cdot \frac{1 - |\Gamma_S|^2}{|1 - S_{11} \cdot \Gamma_S|^2} \cdot \frac{1 - |\Gamma_L|^2}{|1 - S_{22} \cdot \Gamma_L|^2}$$

$$S_{12} \cong 0 \qquad \Gamma_{in} = S_{11}$$

Maximum power gain

$$\Gamma_{S} = S_{11}^{*} \qquad \qquad G_{TU \max} = \frac{1}{1 - |S_{11}|^{2}} \cdot |S_{21}|^{2} \cdot \frac{1}{1 - |S_{22}|^{2}}$$

$$\Gamma_{L} = S_{22}^{*}$$

Unilateral figure of merit

 Allows estimation of the error introduced by the unilateral assumption

$$\frac{1}{\left(1+U\right)^{2}} < \frac{G_{T}}{G_{TU}} < \frac{1}{\left(1-U\right)^{2}} \qquad \qquad U = \frac{|S_{12}| \cdot |S_{21}| \cdot |S_{11}| \cdot |S_{22}|}{\left(1-|S_{11}|^{2}\right) \cdot \left(1-|S_{22}|^{2}\right)}$$

- We compute U then the maximum and minimum deviation of G_{TU} from G_T
 - this deviation must be accounted in the design as a reserve gain against the target gain

 $-20 \cdot \log(1+U) < G_T[dB] - G_{TU}[dB] < -20 \cdot \log(1-U)$

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
- $U = \frac{|S_{12}| \cdot |S_{21}| \cdot |S_{11}| \cdot |S_{22}|}{\left(1 |S_{11}|^2\right) \cdot \left(1 |S_{22}|^2\right)} = 0.094$
 - $-0.783 \, dB < G_T [dB] G_{TU} [dB] < 0.861 \, dB$

■ S22 = 0.22 ∠146°

ATF-34143 at Vds=3V Id=20mA.

ATF-34143 at Vds=3V Id=20mA. @5GHz

Design for Specified Gain

In the unilateral assumption:

Design for Specified Gain

- power gain added by the input matching circuit is not influenced by the output matching circuit $G_s = G_s(\Gamma_s)$
- power gain added by the output matching circuit is not influenced by the input matching circuit $G_L = G_L(\Gamma_L)$
- Output /Input match can be designed independently
 - We can impose different demands for input/output
 - Total gain is:

 $G_T = G_S \cdot G_0 \cdot G_L \qquad \qquad G_T[dB] = G_S[dB] + G_0[dB] + G_L[dB]$

Input matching circuit

 Maximum gain in the case of complex conjugate match

$$\Gamma_S = S_{11}^* \Longrightarrow \qquad G_{S\max} = \frac{1}{1 - |S_{11}|^2}$$

• For any other input matching circuit: $G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}} < G_{S \max} = \frac{1}{1 - |S_{11}|^{2}}$

- ATF-34143 at Vds=3V Id=20mA.
 - @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
 - S22 = 0.22 ∠146°

$$U = \frac{|S_{12}| \cdot |S_{21}| \cdot |S_{11}| \cdot |S_{22}|}{\left(1 - |S_{11}|^2\right) \cdot \left(1 - |S_{22}|^2\right)} = 0.094$$

 $-0.783 \, dB < G_T [dB] - G_{TU} [dB] < 0.861 \, dB$

$$G_{TU \max} = \frac{1}{1 - |S_{11}|^2} \cdot |S_{21}|^2 \cdot \frac{1}{1 - |S_{22}|^2} = 17.83$$
$$G_{TU \max} [dB] = 12.511 \, dB$$
$$G_{S \max} = \frac{1}{1 - |S_{11}|^2} = 1.694 = 2.289 \, dB$$

G_S(Γ_S)

 $G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}}$

$G_{s}(\Gamma_{s})$, constant value contours

Contour map/lines

© 2011 Encyclopædia Britannica, Inc.

106°

108°

110°

114°

116° E

$G_{s}(\Gamma_{s})$, constant value contours

$$G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}}$$

$$G_{S\max} = G_S \big|_{\Gamma_S = S_{11}^*}$$

$G_{s}[dB](\Gamma_{s})$, constant value contours

Input section constant gain circles

The normalized gain factor (linear scale!) $g_{S} = \frac{G_{S}}{G_{S \max}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11} \cdot \Gamma_{S}|^{2}} \cdot (1 - |S_{11}|^{2}) < 1$ Locus of the points with fixed values $g_{s} < 1$ $g_{S} \cdot |1 - S_{11} \cdot \Gamma_{S}|^{2} = (1 - |\Gamma_{S}|^{2}) \cdot (1 - |S_{11}|^{2})$ $(1 - |S_{11}|^{2} - (1 - |S_{11}|^{2}) + (1 - |S_{11}|^{2})$

$$g_{S} \cdot |1 - S_{11} \cdot \Gamma_{S}|^{2} = (1 - |\Gamma_{S}|^{2}) \cdot (1 - |S_{11}|^{2})$$

$$\left(g_{S} \cdot |S_{11}|^{2} + 1 - |S_{11}|^{2}\right) \cdot |\Gamma_{S}|^{2} - g_{S} \cdot (S_{11} \cdot \Gamma_{S} + S_{11}^{*} \cdot \Gamma_{S}^{*}) = 1 - |S_{11}|^{2} - g_{S}$$

$$\Gamma_{S} \cdot \Gamma_{S}^{*} - \frac{g_{S} \cdot (S_{11} \cdot \Gamma_{S} + S_{11}^{*} \cdot \Gamma_{S}^{*})}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} = \frac{1 - |S_{11}|^{2} - g_{S}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} + \frac{g_{S}^{2} \cdot |S_{11}|^{2}}{[1 - (1 - g_{S}) \cdot |S_{11}|^{2}}$$

Input section constant gain circles

$$\Gamma_{S} - \frac{g_{S} \cdot S_{11}^{*}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \bigg| = \frac{\sqrt{1 - g_{S}} \cdot (1 - |S_{11}|^{2})}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \qquad |\Gamma_{S} - C_{S}| = R_{S}$$

$$C_{S} = \frac{g_{S} \cdot S_{11}^{*}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \qquad R_{S} = \frac{\sqrt{1 - g_{S}} \cdot (1 - |S_{11}|^{2})}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}}$$

- Equation of a circle in the complex plane where Γ_S is plotted
 Interpretation: Any reflection coefficient Γ_S which plotted in the complex plane lies on the circle drawn for g_{circle} = G_{circle}/G_{Smax} will lead to a gain G_S = G_{circle}
 - Any reflection coefficient Γ_s plotted **outside** this circle will lead to a gain G_s < G_{circle}
 - Any reflection coefficient Γ_s plotted inside this circle will lead to a gain G_s > G_{circle}

Input section constant gain circles

$$C_{S} = \frac{g_{S} \cdot S_{11}^{*}}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}} \qquad \qquad R_{S} = \frac{\sqrt{1 - g_{S}} \cdot (1 - |S_{11}|^{2})}{1 - (1 - g_{S}) \cdot |S_{11}|^{2}}$$

- The centers of each family of circles lie along straight lines given by the angle of $\Gamma_{S \max} = S_{11}^*$
- Circles are plotted (traditionally, CAD) in logarithmic scale ([dB])
 - formulas are in linear scale!
- The circle for G_S = o dB will always pass through the origin of the complex plane (center of the Smith chart)

Output section constant gain circles

$$G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}}$$

1

• Maximum gain for
$$\Gamma_L = S_{22}^* \Rightarrow G_{Lmax} = \frac{1}{1 - |S_{22}|^2}$$

 $g_L = \frac{G_L}{G_{Lmax}} = \frac{1 - |\Gamma_L|^2}{|1 - S_{22} \cdot \Gamma_L|^2} \cdot (1 - |S_{22}|^2) < 1$

Similar computations $C_{L} = \frac{g_{L} \cdot S_{22}^{*}}{1 - (1 - g_{L}) \cdot |S_{22}|^{2}}$ $R_{L} = \frac{\sqrt{1 - g_{L}} \cdot (1 - |S_{22}|^{2})}{1 - (1 - g_{L}) \cdot |S_{22}|^{2}}$ Example $G_{Lmax} = \frac{1}{1 - |S_{22}|^{2}} = 1.051 = 0.215 \, dB$

G_L(Γ_L)

 $G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}}$

$G_L(\Gamma_L)$, constant value contours

$$G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}}$$

 $G_{L\max} = G_L \big|_{\Gamma_L = S_{22}^*}$

$G_{L}[dB](\Gamma_{L})$, constant value contours

ADS

Circles are plotted for requested values (in dB!)
 It is usefull to compute G_{Smax} and G_{Lmax} before

in order to request relevant circles

Design for Specified Gain

- We compute G_o, G_{Smax}, G_{Lmax}
 To obtain the design gain we choose supplemental gain needed (supplemental to constant G_{a})
 - we account for the deviation that might arise from the unilateral assumption (using unilateral figure of merit U)

 $G_{design}[dB] = G_{S design}[dB] + G_0[dB] + G_{L design}[dB]$

- We plot the circles for design (chosen) values G_{S_design}, G_{L_design}
 We design input and output matching circuits
- which move the reflection coefficient on or inside the design circles (depending on specific application requirements)
Low-Noise Amplifier Design

Microwave Amplifiers

Amplifier as two-port

- For an amplifier two-port we are interested in:
 - stability
 - power gain
 - noise (sometimes small signals)
 - linearity (sometimes large signals)

The noise figure F, is a measure of the reduction in signalto-noise ratio between the input and output of a device, when (by definition) the input noise power is assumed to be the noise power resulting from a matched resistor at To = 290 K (reference noise conditions)

$$F = \frac{S_i / N_i}{S_o / N_o} \bigg|_{T_0 = 290K}$$

 The noise figure F, is not directly a measure of the reduction in signal-to-noise ratio between the input and output of a device, when the input noise power is different from that of the reference noise conditions

$$F \neq \frac{S_i / N_i}{S_o / N_o} \bigg|_{T_0 \neq 290K}$$

- In general, the output noise power consists of two elements:
 - the input noise power amplified or attenuated by the device (for example amplified with the power gain G applied also to the desired signal)
 - a noise power generated internally by the network if the network is noisy (this power does not depend on the input noise power)

Estimation of the internally generated noise power can be done using the Noise Figure F definition:

$$F = \frac{S_1 / N_1}{S_2 / N_2} \bigg|_{T_0 = 290K, N_1 = N_0} \qquad N_2 = F \cdot N_0 \cdot \frac{S_2}{S_1} = F \cdot N_0 \cdot G$$
$$N_2 = N_0 \cdot G + (F - 1) \cdot N_0 \cdot G$$

Noise figure of a cascaded system

$$P_{1} = S_{1} + N_{1}$$

$$F_{1}$$

$$F_{1}$$

$$T_{e1}$$

$$P_{2} = S_{2} + N_{2}$$

$$G_{2}$$

$$F_{2}$$

$$F_{2}$$

$$T_{e2}$$

$$P_{3} = S_{3} + N_{3}$$

$$P_1 = S_1 + N_1$$

$$T_0$$

$$G_1G_2$$

$$F_{cas}$$

$$T_{ecas}$$

$$P_3 = S_3 + N_3$$

 $N_{2} = N_{1} \cdot G_{1} + (F_{1} - 1) \cdot N_{0} \cdot G_{1} \qquad G_{cas} = G_{1} \cdot G_{2}$ $N_{3} = N_{2} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} \qquad N_{3} = N_{1} \cdot G_{cas} + (F_{cas} - 1) \cdot N_{0} \cdot G_{cas}$ \downarrow $N_{3} = [N_{1} \cdot G_{1} + (F_{1} - 1) \cdot N_{0} \cdot G_{1}] \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2}$ $N_{3} = N_{1} \cdot G_{1} \cdot G_{2} + (F_{1} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2}$

Noise figure of a cascaded system

$$P_{1} = S_{1} + N_{1}$$

$$F_{1}$$

$$F_{1}$$

$$T_{e1}$$

$$P_{2} = S_{2} + N_{2}$$

$$G_{2}$$

$$F_{2}$$

$$F_{2}$$

$$T_{e2}$$

$$P_{3} = S_{3} + N_{3}$$

$$P_1 = S_1 + N_1$$

$$T_0$$

$$F_{cas}$$

$$T_{ecas}$$

$$P_3 = S_3 + N_3$$

$$\begin{split} N_{3} &= N_{1} \cdot G_{1} \cdot G_{2} + (F_{1} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} \\ G_{cas} &= G_{1} \cdot G_{2} \qquad N_{3} = N_{1} \cdot G_{cas} + (F_{cas} - 1) \cdot N_{0} \cdot G_{cas} \\ (F_{1} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} + (F_{2} - 1) \cdot N_{0} \cdot G_{2} = (F_{cas} - 1) \cdot N_{0} \cdot G_{1} \cdot G_{2} \\ F_{cas} &= F_{1} + \frac{1}{G_{1}} (F_{2} - 1) \end{split}$$

Noise figure of a cascaded system

Friis Formula (!linear scale)

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

Friis Formula (noise)

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

Friis Formula shows that:

- the overall noise figure of a cascaded system is largely determined by the noise characteristics of the first stage
- the noise introduced by the following stages is reduced:
 - -1
 - division by G (usually G > 1)

Friis Formula (noise)

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 \cdot G_2} + \frac{F_4 - 1}{G_1 \cdot G_2 \cdot G_3} + \cdots$$

- Effects of Friis Formula:
- in multi stage amplifiers:
 - it's essential that the first stage is as noiseless as possible even if that means sacrificing power gain
 - the following stages can be optimized for power gain
- in single stage amplifiers:
 - in the input matching circuit it's important to have noiseless elements (pure reactance, lossless lines)
 - output matching circuit has less influence on the noise (noise generated at this level appears when the desired signal has already been amplified by the transistor)

$$V_{n(ef)} = \sqrt{4kTBR} \qquad P_n = kTB$$

Noise Figure of a Mismatched Amplifier

• An input mismatched amplifier($\Gamma \neq o$)

Example

- ATF-34143 at Vds=3V Id=20mA.
 - @5GHz IS-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99 S11 = 0.64∠139° # ghz s ma r 50 2.0 0.75 -126 6.306 90 0.088 23 0.26 -120 S12 = 0.119∠-21° 2.5 0.72 -145 5.438 75 0.095 15 0.25 -140 3.0 0.69 -162 4.762 62 0.102 7 0.23 -156 4.0 0.65 166 3.806 38 0.111 -8 0.22 174 5.0 0.64 139 3.165 16 0.119 -21 0.22 146 S21 = 3.165 ∠16° 6.0 0.65 114 2.706 -5 0.125 -35 0.23 118 7.0 0.66 89 2.326 -27 0.129 -49 0.25 91 8.0 0.69 67 2.017 -47 0.133 -62 0.29 67 S22 = 0.22 ∠146° 9.0 0.72 48 1.758 -66 0.135 -75 0.34 46 **!FREQ Fopt GAMMA OPT** RN/Zo Fmin = 0.54 (tipic [dB] !GHZ dB MAG ANG -2.0 0.19 0.71 66 0.09 • $\Gamma_{opt} = 0.45 \angle 174^{\circ}$ 2.5 0.23 0.65 83 0.07 3.0 0.29 0.59 102 0.06 4.0 0.42 0.51 138 0.03 $r_n = 0.03$ 5.0 0.54 0.45 174 0.03 6.0 0.67 0.42 -151 0.05 7.0 0.79 0.42 -118 0.10

!ATF-34143

8.0 0.92 0.45 -88 0.18 9.0 1.04 0.51 -63 0.30 10.0 1.16 0.61 -43 0.46

Example

Stabilization, input series resistor

freq, GHz

Stabilization, input shunt resistor

freq, GHz

Stabilization, output series resistor

freq, GHz

freq, GHz

 $R_{SL} = 1 \div 10 \Omega$

Stabilization, output shunt resistor

Noise figure of a two-port amplifier

3 noise parameters (2reals + 1 complex):

$$F_{\min}, r_n = \frac{R_N}{Z_0}, \Gamma_{opt}$$

- $F = F_{\min} + \frac{R_N}{G_S} \cdot \left| Y_S Y_{opt} \right|^2 \qquad Y_S = \frac{1}{Z_0} \cdot \frac{1 \Gamma_S}{1 + \Gamma_S} \qquad Y_{opt} = \frac{1}{Z_0} \cdot \frac{1 \Gamma_{opt}}{1 + \Gamma_{opt}}$ $F = F_{\min} + 4 \cdot r_n \cdot \frac{\left| \Gamma_S \Gamma_{opt} \right|^2}{\left(1 \left| \Gamma_S \right|^2 \right) \cdot \left| 1 + \Gamma_{opt} \right|^2}$
- Γ_{opt} optimum source reflection coefficient that results in minimum noise figure

$$\Gamma_S = \Gamma_{opt} \Longrightarrow F = F_{\min}$$

F(Γ_S)

$F[dB](\Gamma_s)$

$F[dB](\Gamma_s)$, constant value contours

$G_{s}[dB](\Gamma_{s})$, constant value contours

- We define N (noise figure parameter)
 - N constant for F constant

$$N = \frac{\left|\Gamma_{S} - \Gamma_{opt}\right|^{2}}{1 - \left|\Gamma_{S}\right|^{2}} = \frac{F - F_{\min}}{4 \cdot r_{n}} \cdot \left|1 + \Gamma_{opt}\right|^{2}$$
$$\left(\Gamma_{S} - \Gamma_{opt}\right) \cdot \left(\Gamma_{S}^{*} - \Gamma_{opt}^{*}\right) = N \cdot \left(1 - \left|\Gamma_{S}\right|^{2}\right)$$
$$\Gamma_{S} \cdot \Gamma_{S}^{*} + N \cdot \left|\Gamma_{S}\right|^{2} - \left(\Gamma_{S} \cdot \Gamma_{opt}^{*} - \Gamma_{S}^{*} \cdot \Gamma_{opt}\right) + \Gamma_{opt} \cdot \Gamma_{opt}^{*} = N$$
$$\Gamma_{S} \cdot \Gamma_{S}^{*} - \frac{\Gamma_{S} \cdot \Gamma_{opt}^{*} - \Gamma_{S}^{*} \cdot \Gamma_{opt}}{N + 1} + \Gamma_{opt} \cdot \Gamma_{opt}^{*} = \frac{N - \left|\Gamma_{opt}\right|^{2}}{N + 1} + \frac{\left|\Gamma_{opt}\right|^{2}}{(N + 1)^{2}}$$

$$\begin{split} \left| \Gamma_{S} - \frac{\Gamma_{opt}}{N+1} \right| &= \frac{\sqrt{N \cdot \left(N + 1 - \left| \Gamma_{opt} \right|^{2} \right)}}{N+1} \qquad \left| \Gamma_{S} - C_{F} \right| = R_{F} \\ C_{F} &= \frac{\Gamma_{opt}}{N+1} \qquad R_{F} = \frac{\sqrt{N \cdot \left(N + 1 - \left| \Gamma_{opt} \right|^{2} \right)}}{N+1} \end{split}$$

- The locus in the complex plane Γ_s of the points with constant noise figure is a circle
- Interpretation: Any reflection coefficient Γ_S which plotted in the complex plane lies on the circle drawn for F_{circle} will lead to a noise factor F = F_{circle}
 - Any reflection coefficient Γ_S plotted **outside** this circle will lead to a noise factor F > F_{circle}
 - Any reflection coefficient Γ_S plotted inside this circle will lead to a noise factor F < F_{circle}

ADS

- The noise internally generated by the transistor depends only by the input matching circuit
- A minimum noise figure is possible (NF_{min} a datasheet parameter for the transistor)
- If we design a low noise amplifier (LNA) the usual design technique is as follows:
 - design of the input matching circuit solely (largely) for noise optimization
 - design of output matching circuit for gain compensation/optimization (if lossy circuits are used the output matching circuit noise can be added but the transistor noise is not influenced)

LNA – Low Noise Amplifier

 Usually a transistor suitable for implementing an LNA at a certain frequency will have input gain circles and noise circles in the same area for Γ_s

- Connecting the amplifier (transistor) directly to the source with Zo generate a reflection coefficient seen towards the source equal with **o** (complex, $\Gamma_o = o + o \cdot j$)
 - most of the time this reflection coefficient does not offer optimum noise/gain

- We plot on the complex plane (Smith Chart) the stability/gain/noise circles (depending on the particular application)
- We choose a point with a suitable position relative to these circles (also application dependent)
- We determine the input reflection coefficient corresponding to this point, $\Gamma_{\rm S}$

 We insert the input matching circuits which allows the transistor to see towards the source the previously determined reflection coefficient Γ_s

- Easiest to design matching section consists in the insertion of (in order from the transistor towards the Z_o source):
 - a series Z_o line, with electrical length θ
 - a shunt stub, open-circuited, made from a Z_o line, with electrical length θ_{sp}

 Computation depends solely on Γ_s (magnitude and phase)

$$\cos(\varphi_{s}+2\theta) = -|\Gamma_{s}| \qquad \tan \theta_{sp} = \frac{\mp 2 \cdot |\Gamma_{s}|}{\sqrt{1-|\Gamma_{s}|^{2}}}$$

The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

Shunt stub matching, C6-7

Example, LNA @ 5 GHz

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz• $S11 = 0.64 \angle 139^{\circ}$ • $S12 = 0.119 \angle -21^{\circ}$
 - S21 = 3.165 ∠16°
 - S22 = 0.22 ∠146°
 - Fmin = 0.54 (tipic [dB]
 - Γ_{opt} = 0.45 ∠174°
 - r_n = 0.03

!ATF-34143 !S-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99
ghz s ma r 50
2.0 0.75 -126 6.306 90 0.088 23 0.26 -120 2.5 0.72 -145 5.438 75 0.095 15 0.25 -140 3.0 0.69 -162 4.762 62 0.102 7 0.23 -156
4.0 0.65 166 3.806 38 0.111 -8 0.22 174 5.0 0.64 139 3.165 16 0.119 -21 0.22 146 6.0 0.65 114 2.706 -5 0.125 -35 0.23 118
7.00.66892.326-270.129-490.25918.00.69672.017-470.133-620.29679.00.72481.758-660.135-750.3446
!FREQ Fopt GAMMA OPT RN/Zo !GHZ dB MAG ANG -
2.0 0.19 0.71 66 0.09
2.5 0.23 0.65 83 0.07
3.0 0.29 0.59 102 0.06
4.0 0.42 0.51 138 0.03
5.0 0.54 0.45 1/4 0.03
0.0 0.07 0.42 -151 0.05 7 0 0 79 0 42 -118 0 10
8.0 0.92 0.45 -88 0.18
9.0 1.04 0.51 -63 0.30

00 1 16 0 61 -43 0 46

Example, LNA @ 5 GHz

- Low Noise Amplifier
- At the input matching a compromise is required between:
 - noise (input constant noise figure circles)
 - gain (input constant gain circles)
 - stability (input stability circle)
- At the output matching noise is not influenced.
 A compromise is required between :
 - gain (output constant gain circles)
 - stability (output stability circle)

Exemplu, LNA @ 5 GHz

- In this particular case G_{Lmax} = 0.21 dB, the transistor could be used directly connected to the 50Ω load
- The absence of the output matching circuit is not recommended. While the attainable power gain is low, it's absence eliminates the possibility to use it to compensate an improper gain generated by the noise optimization of the input matching circuit

Input matching circuit

- For the input matching circuit
 - noise circle CZ: 0.75dB
 - input constant gain circles CCCIN: 1dB, 1.5dB, 2 dB
- We choose (small Q → wide bandwidth) position m1

Input matching circuit

 If we can afford a 1.2dB decrease of the input gain for better NF,Q (Gs = 1 dB), position m1 above is better
 We obtain better (smaller) NF

Input matching circuit

• Position m1 in complex plane (Smith Chart) $\Gamma_{S} = 0.412 \angle -178^{\circ}$ $|\Gamma_{S}| = 0.412; \quad \varphi = -178^{\circ}$ $\cos(\varphi + 2\theta) = -|\Gamma_{S}|$ $\operatorname{Im}[y_{S}(\theta)] = \frac{\mp 2 \cdot |\Gamma_{S}|}{\sqrt{1 - |\Gamma_{S}|^{2}}}$ $\cos(\varphi + 2\theta) = -0.412 \Rightarrow (\varphi + 2\theta) = \pm 114.33^{\circ}$

$$(\varphi + 2\theta) = \begin{cases} +114.33^{\circ} \\ -114.33^{\circ} \end{cases} \theta = \begin{cases} 146.2^{\circ} \\ 31.8^{\circ} \end{cases} \operatorname{Im}[y_{S}(\theta)] = \begin{cases} -0.904 \\ +0.904 \end{cases} \theta_{sp} = \begin{cases} 137.9^{\circ} \\ 42.1^{\circ} \end{cases}$$

Output matching circuit

output constant gain circles CCCOUT: -0.4dB, -0.2dB, odB, +0.2dB
 The lack of noise restrictions allows optimization for better gain (close to maximum – position m4)

Output matching circuit

• Position m4 in complex plane (Smith Chart) $\Gamma_L = 0.186 \angle -132.9^\circ$ $|\Gamma_L| = 0.186; \quad \varphi = -132.9^\circ$ $\cos(\varphi + 2\theta) = -|\Gamma_L|$ $\operatorname{Im}[y_L(\theta)] = \frac{-2 \cdot |\Gamma_L|}{\sqrt{1 - |\Gamma_L|^2}} = -0.379$ $\cos(\varphi + 2\theta) = -0.186 \Rightarrow (\varphi + 2\theta) = \pm 100.72^\circ$

$$(\varphi + 2\theta) = \begin{cases} +100.72^{\circ} \\ -100.72^{\circ} \end{cases} \theta = \begin{cases} 116.8^{\circ} \\ 16.1^{\circ} \end{cases} \operatorname{Im}[y_{L}(\theta)] = \begin{cases} -0.379 \\ +0.379 \end{cases} \theta_{sp} = \begin{cases} 159.3^{\circ} \\ 20.7^{\circ} \end{cases}$$

LNA

 We estimate a gain (in unilateral assumption, ±0.9 dB)

 $G_{T}[dB] = G_{S}[dB] + G_{0}[dB] + G_{L}[dB]$ $G_{T}[dB] = 1 dB + 10 dB + 0.2 dB = 11.2 dB$

 We estimate a noise factor well bellow 0.75dB (quite close to the minimum ~0.6 dB)

ADS

freq, GHz

ADS

freq, GHz

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro